Evidence of a Substrate-Discriminating Entrance Channel in the Lower Porter Domain of the Multidrug Resistance Efflux Pump AcrB.

نویسندگان

  • Sabine Schuster
  • Martina Vavra
  • Winfried V Kern
چکیده

Efflux pumps of the resistance nodulation cell division (RND) transporter family, such as AcrB of Escherichia coli, play an important role in the development of multidrug resistance, but the molecular basis for their substrate promiscuity is not yet completely understood. From a collection of highly clarithromycin-resistant AcrB periplasmic domain mutants derived from in vitro random mutagenesis, we identified variants with an unusually altered drug resistance pattern characterized by increased susceptibility to many drugs of lower molecular weight, including fluoroquinolones, tetracyclines, and oxazolidinones, but unchanged or increased resistance to drugs of higher molecular weight, including macrolides. Sequencing of 14 such "divergent resistance" phenotype mutants and 15 control mutants showed that this unusual phenotype was associated with mutations at residues I38 and I671 predominantly to phenylalanine and threonine, respectively, both conferring a similar susceptibility pattern. Reconstructed I38F and I671T single mutants as well as an engineered I38F I671T double mutant with proved efflux competence revealed an equivalent phenotype with enhanced or unchanged resistance to many large AcrB substrates but increased susceptibility to several lower-molecular-weight drugs known to bind within the distal binding pocket. The two isoleucines located in close vicinity to each other in the lower porter domain of AcrB beneath the bottom of the proximal binding pocket may be part of a preferential small-drug entrance pathway that is compromised by the mutations. This finding supports recent indications of distinct entrance channels used by compounds with different physicochemical properties, of which molecular size appears to play a prominent role.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hoisting-Loop in Bacterial Multidrug Exporter AcrB Is a Highly Flexible Hinge That Enables the Large Motion of the Subdomains

The overexpression of RND-type exporters is one of the main causes of multidrug resistance (MDR) in Gram-negative pathogens. In RND transporters, such as Escherichia coli's main efflux pump AcrB, drug efflux occurs in the porter domain, while protons flow through the transmembrane domain: remote conformational coupling. At the border of a transmembrane helix (TM8) and subdomain PC2, there is a ...

متن کامل

Kinetic behavior of the major multidrug efflux pump AcrB of Escherichia coli.

Multidrug efflux transporters, especially those that belong to the resistance-nodulation-division (RND) family, often show very broad substrate specificity and play a major role both in the intrinsic antibiotic resistance and, with increased levels of expression, in the elevated resistance of Gram-negative bacteria. However, it has not been possible to determine the kinetic behavior of these im...

متن کامل

Transport of lipophilic carboxylates is mediated by transmembrane helix 2 in multidrug transporter AcrB

The deployment of multidrug efflux pumps is a powerful defence mechanism for Gram-negative bacterial cells when exposed to antimicrobial agents. The major multidrug efflux transport system in Escherichia coli, AcrAB-TolC, is a tripartite system using the proton-motive force as an energy source. The polyspecific substrate-binding module AcrB uses various pathways to sequester drugs from the peri...

متن کامل

Stepwise substrate translocation mechanism revealed by free energy calculations of doxorubicin in the multidrug transporter AcrB

AcrB is the inner membrane transporter of the tripartite multidrug efflux pump AcrAB-TolC in E. coli, which poses a major obstacle to the treatment of bacterial infections. X-ray structures have identified two types of substrate-binding pockets in the porter domains of AcrB trimer: the proximal binding pocket (PBP) and the distal binding pocket (DBP), and suggest a functional rotating mechanism...

متن کامل

Detection of Efflux Pump Using Ethidium Bromide-Agar Cartwheel Method in Acinetobacter baumannii Clinical Isolates

Introduction: In the past decade, multidrug-resistant Acinetobacter baumannii has become one of the most critical challenges in treating infected patients. The AdeABC efflux pump is the most important among the various resistance mechanisms. This pump can force various antibiotics and ethidium bromide out of the bacterial cell to the surrounding environment. Methods: In this study, nine A. baum...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Antimicrobial agents and chemotherapy

دوره 60 7  شماره 

صفحات  -

تاریخ انتشار 2016